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The relationship between directional derivatives of generalized distance functions
and the existence of generalized nearest points in Banach spaces is investigated. Let
G be any nonempty closed subset in a compact locally uniformly convex Banach
space. It is proved that if the one-sided directional derivative of the generalized
distance function associated to G at x equals to 1 or −1, then the generalized
nearest points to x from G exist. We also give a partial answer (Theorem 3.5) to the
open problem put forward by S. Fitzpatrick (1989, Bull. Austral. Math. Soc. 39,
233–238). © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let X be a real Banach space of dimension at least 2 and Xg be the dual
of X. For a nonempty subset A …X, as usual, we mean by int A and “A
the interior and the boundary of A, respectively. We use B(x, r) to denote
the closed ball in X with center x and radius r > 0. In particular, we write
B=B(0, 1).
Throughout this paper, C will denote a closed bounded convex subset of
X with 0 ¥ int C. Clearly C is an absorbing subset of X but not necessarily



symmetric. Recall that the Minkowski functional pC: X0 R with respect
to the set C is defined by

pC(x)=inf{a > 0 : x ¥ aC}, -x ¥X.

For a closed nonempty subset G of X, define the generalized distance
function by

dG(x)=inf
z ¥ G
pC(x−z), -x ¥X.

A point z0 ¥ G with pC(x−z0)=dG(x) is called a generalized nearest point
(or generalized best approximation) to x from G. Moreover, for any
x, y ¥X, if the one-sided directional derivative of dG at x

d −G(x)(y)= lim
tQ 0+

dG(x+ty)−dG(x)
t

exists, then −pC(−y) [ d
−

G(x)(y) [ pC(y).
Recently, De Blasi and Myjak [1] and Li [12] investigated the well
posedness of generalized best approximation. Their results improve and
extend the corresponding results in [2–4, 11, 13, 15].
As shown in [5–8, 10, 14], in the case when p( · ) is the norm || · ||, or
equivalently, C=B, differentiability properties of dG( · ) are related to the
existence of the nearest point and continuity of the metric projection PG
which is defined by

PG(x)={z ¥ G : pC(x−z)=dG(x)}.

In the present paper, we will investigate the relationship between directional
derivatives of generalized distance functions and existence of generalized
nearest points in Banach spaces. It is proved that if the one-sided directional
derivative of the generalized distance function associated to G at x equals
to 1 or −1, then the generalized nearest points to x from G exist provided
that X is a compactly locally uniformly convex Banach space. Moreover,
we also answer partly the open problem put forward by Fitzpatrick in [9].

2. PRELIMINARIES AND LEMMAS

We first state some well known properties of the Minkowski functional
which will be used directly in the rest of the paper, while other properties
are referred to [1, 12].
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Proposition 2.1. Let C be as above. Then, for any x, y ¥X,

(i) −pC(y−x) [ pC(x)−pC(y) [ pC(x−y);
(ii) (pC(x+ty)−pC(x))/t[ (pC(x+tŒy)−pC(x))/tŒ, -t, tŒ ¥ R, t < tŒ;
(iii) m ||x|| [ pC(x) [ n ||x||, where

m= inf
x ¥ “B
pC(x) and n=sup

x ¥ “B
pC(x).

Proposition 2.2. Let G be a closed subset of X. Then, for any x, y ¥X,

−pC(y−x) [ dG(x)−dG(y) [ pC(x−y)

and

|dG(x)−dG(y)| [ n ||x−y||.

Definition 2.1. Let y ¥ “C.

(i) C is called compactly locally uniformly convex at y if, for any
sequence {yn} … “C, the condition limnQ. pC(yn+y)=2 implies that {yn}
has a converging subsequence.

(ii) C is called locally uniformly convex at y if, for any sequence
{yn} … “C, the condition limnQ. pC(yn+y)=2 implies that limnQ.
pC(yn−y)=0.
(iii) C is called (compactly) locally uniformly convex if C is (compactly)

locally uniformly convex at every point y ¥ “C.

Definition 2.2. C is called strictly convex if, for any x, y ¥ “C,
pC(x+y)=pC(x)+pC(y) implies x=y.

Definition 2.3. C is called (sequentially) Kadec if, for any sequence
{xn} … “C and x0 ¥ “C, xn Q x0 weakly implies that xn Q x0 strongly.

Finally, we still need two lemmas. Recall that a sequence {zn} in G is
called a minimizing sequence for x ¥X if limnQ. pC(x−zn)=dG(x).

Lemma 2.1. Let G be a closed nonempty subset of X, x ¥X0G, and
y ¥ “C. Suppose

lim sup
tQ 0+

dG(x+ty)−dG(x)
t

=1. (f)

If {zn} is a minimizing sequence for x , then limnQ. pC(yn+y)=2, where
yn=(x−zn)/pC(x−zn).
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Proof. Let tn Q 0+ such that

lim
nQ.

dG(x+tn y)−dG(x)
tn

=1.

We may assume that 0 < tn < dG(x)[ pC(x−zn) and t
2
n > pC(x−zn)−dG(x).

From Proposition 2.1(ii), it follows that

dG(x+tn y)−dG(x)
tn

[
pC(x+tn y−zn)−pC(x−zn)+t

2
n

tn

[
pC[(x−zn)+pC(x−zn) y]−pC(x−zn)

pC(x−zn)
+tn

=pC(yn+y)−1+tn

and so

2 [ lim inf
nQ.

pC(yn+y) [ lim sup
nQ.

pC(yn+y) [ 2.

This implies that

lim
nQ.
pC(yn+y)=2.

The proof is complete. L

Lemma 2.2. Let {yn} … “C, y ¥ “C be such that limnQ. pC(yn+y)=2.
Let

G0=3zn=−11+
1
n
2 yn+y
pC(yn+y)

: n=1, 2, ...4 .

Then d −G0 (0)(y)=1 and d
−

G0 (0)(−y)=−1.

Proof. For every t > 0, we have

dG0 (ty)−dG0 (0)=inf
n
pC(ty−zn)−1=inf

n

3pC(ty−zn)−pC(−zn)+
1
n
4 .
(2.1)

Let nt ¥ {1, 2, ...} be such that

inf
n

5pC(ty−zn)−pC(−zn)+
1
n
6 \ pC(ty−znt )−pC(−znt )+

1
nt
−t2. (2.2)
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Clearly, limtQ 0+ nt=+.. Let an=(1+1/n)/pC(yn+y). By Proposition
2.1(ii), we have

pC[(−t)(−y)−zn]−pC(−zn)
−t

[
pC[an(−y)−zn]−pC(−zn)

an
, -t > 0.

(2.3)

Thus, from (2.1)–(2.3) and Proposition 2.2, we have

1=pC(y) \ lim sup
tQ 0+

dG0 (ty)−dG0 (0)
t

\ lim inf
tQ 0+

dG0 (ty)−dG0 (0)
t

\ lim inf
tQ 0+

RpC(ty−znt )−pC(−znt )+1nt
t

− t
S

\ lim inf
tQ 0+
1pC(ty−znt )−pC(−znt )

t
− t2

\ lim inf
tQ 0+
1pC(−ant y−znt )−pC(−znt )

−ant
−t2

\ lim inf
tQ 0+
1pC(−ant y−znt )−pC(−znt )

−ant
2+lim inf

tQ 0+
(−t)

=lim inf
nt Q.

pC[−ant y+ant (ynt+y)]−pC[ant (ynt+y)]
−ant

=lim inf
nt Q.

(−pC(ynt )+pC(ynt+y))=2−1=1

so that d −G(0)(y)=1.
By a similar argument one can show d −G0 (0)(−y)=−1 and the proof is
complete. L
Remark 2.1. In the case when pC( · ) is a norm, d

−

G0 (0)(−y)=−1 was
proved by Fitzpatrick in [9]. He also mentioned that d −G0 (0)(y)=1 with
no proof. We note that the fact d −G0 (0)(y)=1 is not trivial as d

−

G0 (0)(y) is
not homogenous in y, in general, so that it can not be deduced directly
from d −G0 (0)(−y)=−1.

3. MAIN RESULTS

Before proving the main theorems, we introduce the concept of approx-
imative compactness of G for x ¥X.
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Definition 3.1. Let G be a closed nonempty subset of a Banach space
X and x ¥X. G is called approximatively compact for x if any minimizing
sequence for x has converging subsequences.

Theorem 3.1. Let y ¥ “C. Then the following statements are equivalent:

(i) for any nonempty closed subset G of X and x ¥X0G, if (f) is
satisfied, then G is approximatively compact for x;

(ii) for any nonempty closed subset G of X and x ¥X0G, if
d −G(x)(y)=1, then G is approximatively compact for x;
(iii) C is compactly locally uniformly convex at y.

Proof. (i)S (ii). It is obvious.
(ii)S (iii). Suppose (iii) does not hold. Then there exists a sequence
{yn} … “C such that limnQ. pC(yn+y)=2 but {yn} has no converging
subsequences. Let

G=3x−11+1
n
2 yn+y
pC(yn+y)

: n=1, 2, ...4 .

Then G is closed and

dG(x)=inf
z ¥ G
pC(x−z)=1.

Note that, for any z ¥ G, z=x−(1+1n )((yn+y)/pC(yn+y)) for some
n \ 1. Thus,

pC(x−z)=1+
1
n
> dG(x)

so that x has no nearest point in G. However, from Lemma 2.2 we have
that d −G(x)(y)=d

−

G0 (0)(y)=1, which contradicts to (ii).
(iii)S (i). Assume that (iii) holds and x ¥X0G satisfies (f). Let {zn} be
any minimizing sequence for x and yn=(x−zn)/pC(x−zn). Then by virtue
of Lemma 2.1, we have limnQ. pC(yn+y)=2. Since C is compactly locally
uniformly convex at y, {yn} has a converging subsequence. Consequently,
{zn} has a converging subsequence. The proof is complete. L

Corollary 3.1. The following statements are equivalent :

(i) for each closed nonempty subset G of X and x ¥X0G, if there is
y ¥ “C with d −G(x)(y)=1, then G is approximatively compact for x;
(ii) C is compactly locally uniformly convex.

GENERALIZED DISTANCE FUNCTIONS 49



Theorem 3.2. Let y ¥ “C. The following statements are equivalent:

(i) for each nonempty closed subset G of X and x ¥X0G, if (f) holds,
then G is approximatively compact for x and PG(x)=x−dG(x) y;

(ii) for each nonempty closed subset G of X and x ¥X0G, if d −G(x)(y)
=1, then G is approximatively compact for x and PG(x)=x−dG(x) y;
(iii) C is locally uniformly convex at y.

Proof. (i)S (ii). It is obvious.
(ii)S (iii). Suppose C is not locally uniformly convex at y. Then there is
a sequence {yn} … “C such that

lim
nQ.
pC(yn+y)=2 and pC(yn−y) \ d > 0

for all n. By virtue of Theorem 3.1, {yn} has a converging subsequence,
denoted by {yn} itself. Let y0 ¥ “C be such that pC(yn−y0)Q 0. Clearly,
pC(y0−y) \ d and pC(y0+y)=2. Let

G={x−y, x−y0}.

Then pC(ty+y0)=1+t for each t > 0. Indeed, choose xg ¥Xg with
supx ¥ C Oxg, xP [ 1 such that

7xg,
y0+y
2
8=pC 1

y0+y
2
2=1

and so Oxg, y0P=Oxg, yP=1. It follows that

1+t=tpC(y)+pC(y0) \ pC(ty+y0) \ Oxg, ty+y0P=1+t.

Hence,

pC[(x+ty)−(x−y0)]=pC(ty+y0)=1+t

and

pC[(x+ty)−(x−y)]=pC((t+1) y)=1+t

so that dG(x+ty)=1+t, dG(x)=1, which implies that d
−

G(x)(y)=1.
However, PG(x)={x−y, x−y0}=G, contradicting (ii).
(iii)S (i). Suppose that x ¥X0G and (f) holds. By Lemma 2.1, it follows
that any minimizing sequence {zn} for x satisfies that limnQ. pC(yn+y)
=2, where yn=(x−zn)/pC(x−zn). Observe that C is locally uniformly
convex at y. We have limnQ. pC(yn−y)=0 so that zn Q x−dG(x) y since
limnQ. pC(x−zn)=dG(x). Therefore (i) holds and the proof is complete. L
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Corollary 3.2. The following statements are equivalent:

(i) for each closed nonempty subset G of X and x ¥X0G, if there is
y ¥ “C such that d −G(x)(y)=1, then G is approximatively compact for x and
PG(x)=x−dG(x) y;
(ii) C is locally uniformly convex.

Theorem 3.3. Let −y ¥ “C. The following statements are equivalent:

(i) for each nonempty closed subset G of X and x ¥X0G, if
lim inftQ 0+ ((dG(x+ty)−dG(x))/t)=−1, then PG(x) ]”;

(ii) for each nonempty closed subset G of X and x ¥X0G, if
d −G(x)(y)=−1, then PG(x) ]”;
(iii) C is compactly locally uniformly convex at −y.

Proof. (i)S (ii). It is obvious.
(ii)S (iii). Suppose C is not compactly locally uniformly convex at −y.
Then there is a sequence {yn} … “C such that limnQ. pC(yn−y)=2, but
{yn} has no converging subsequences. Set

GŒ=3x−11+1
n
2 yn−y
pC(yn−y)

: n=1, 2, ...4 .

Then GŒ is closed. Exactly as in the proof of (ii)S (iii) of Theorem 3.1, we
can show PGŒ(x)=”. However, by Lemma 2.2, d

−

GŒ(x)(y)=−1, contra-
dicting (ii).
(iii)S (i). Let tn Q 0+ satisfy limnQ. ((dG(x+tny)−dG(x))/tn)=−1.
Select {zn} … G such that

pC(x+tn y−zn) < dG(x+tn y)+t
2
n.

Then, by Proposition 2.1(ii), we obtain

pC(x+tn y−zn)−pC(x−zn)
tn

\
pC[x−pC(x−zn) y−zn]−pC(x−zn)

−pC(x−zn)

and so

dG(x+tn y)−dG(x)
tn

\
pC(x+tn y−zn)−pC(x−zn)

tn
−tn

\ −tn+
pC(x−zn)−pC[(x−zn)−pC(x−zn) y]

pC(x−zn)

=−tn+1−pC(yn−y),
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where yn=(x−zn)/pC(x−zn). Thus, {yn} … “C and limnQ. pC(yn−y)=2,
which implies that {yn} has a converging subsequence, denoted by {ynk}.
Using Proposition 2.1(iii) and 2.2, we have

dG(x) [ pC(x−zn)

[ pC(x+tn y−zn)+pC(−tn y)

[ (dG(x+tn y)+t
2
n)+tn

[ dG(x)+ntn ||y||+t
2
n+tn.

Hence,

lim
nQ.
pC(x−zn)=dG(x).

Consequently, {znk} converges to some point z0 and pC(x−z0)=dG(x).
This implies that (i) holds and the proof is complete. L

Corollary 3.3. The following statements are equivalent:

(i) for each closed nonempty subset G of X and x ¥X0G, there is
−y ¥ “C with d −G(x)(y)=−1, if and only if PG(x) ]”;
(ii) C is compactly locally uniformly convex.

Proof. By virtue of Theorem 3.3, it suffices to show that there is
−y ¥ “C with d −G(x)(y)=−1 if PG(x) ]”. For this purpose, take g0 ¥
PG(x). Then g0 ¥ PG(g0+t(x−g0)) for every t ¥ (0, 1]. Put y=(g0−x)/
pC(x−g0). We have −y ¥ “C and

dG(x+ty)=pC(x−g0)−t, -t ¥ [0, 1].

Thus

d −G(x)(y)= lim
tQ 0+

pC(x−g0)−t−pC(x−g0)
t

=−1,

completing the proof. L

Corollary 3.4. Let G be a closed nonempty subset and C a compactly
locally uniformly convex subset of a Banach space X. Then G is proximinal
(i.e., PG(x) ]” for every x ¥X) if and only if, for every x ¥X0G, there is
−y ¥ “C satisfying d −G(x)(y)=−1.

Remark 3.1. In the case when pC( · )=|| · ||, it is easy to show that C
is compactly locally uniformly convex at −y ¥ “C if and only if C is
compactly locally uniformly convex at y ¥ “C.

52 LI AND NI



Remark 3.2. It is noted that, in Theorem 3.3 and Corollary 3.3, the
conclusion that PG(x) ]” can not be improved to the stronger one that G
is approximatively compact for x. Similarly, in Corollary 3.4, the conclu-
sion that G is proximinal can not be improved to the stronger one that G is
approximatively compact. Furthermore, even in the case when C is locally
uniformly convex, one can not deduce that PG(x) is a singleton from
d −G(x)(y)=−1, where −y ¥ “C. For example, let X be an arbitrary locally
uniformly convex Banach space of infinite dimension and C the closed unit
ball of X. Define G={x ¥X : ||x|| \ 1}. Obviously, G is proximinal. Thus,
for any x ¥X0G, there is −y ¥ “C such that d−G(x)(y)=−1 by Corollary 3.4.
However, G is neither a Chebyshev set nor an approximatively compact set.

Theorem 3.4. Let G be a nonempty closed subset of Banach space X and
x ¥X0G . If G is approximatively compact for x and PG(x) is a singleton,
then there exists y ¥ “C satisfying d −G(x)(y)=1.

Proof. Let PG(x)={g0} and xt=x+t(x−g0), t ¥ (0, 1). By virtue of
the definition of dG(xt), there is gt ¥ G satisfying pC(xt−gt) < dG(xt)+t2.
Clearly, xt Q x as tQ 0+ and pC(x−gt)−pC(x−g0) \ 0. Choose x

g
t ¥X

g

such that supx ¥ C Oxg, xP=1 and Oxg
t , x−gtP=pC(x−gt). Then,

dG(xt)−dG(x)
t

−pC(x−g0)

\
pC(xt−gt)−pC(x−g0)

t
−pC(x−g0)−t

\
Oxg
t , xt−gtP−pC(x−g0)

t
−pC(x−g0)−t

=
Oxg
t , xt−xP
t

+
pC(x−gt)−pC(x−g0)

t
−pC(x−g0)− t

\ Oxg
t , x−g0P−pC(x−g0)− t

=(Oxgt , x−gtP+Oxg
t , gt−g0P)−pC(x−g0)−t

\ (pC(x−gt)−pC(x−g0))−pC(g0−gt)−t

\ −pC(g0−gt)−t.

Thus

dG(xt)−dG(x)
t

\ pC(x−g0)−pC(g0−gt)− t. (3.1)
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Using Propositions 2.1(iii) and 2.2, we get

dG(x) [ pC(x−gt)

=pC[xt−t(x−g0)−gt]

[ pC(xt−gt)+tpC[−(x−g0)]

[ dG(xt)+t2+tn ||x−g0 ||

[ dG(x)+2nt ||x−g0 ||+t2.

It follows that

lim
tQ 0+

pC(x−gt)=dG(x)=pC(x−g0) > 0.

Since G is approximatively compact for x and PG(x)={g0}, limtQ 0+
pC(g0−gt)=0. This with (3.1) implies that

lim inf
tQ 0+

dG(xt)−dG(x)
t

\ pC(x−g0).

Obviously,

lim sup
tQ 0+

dG(xt)−dG(x)
t

[ pC(x−g0).

Hence d −G(x)(x−g0)=pC(x−g0). By the positive homogeneity of d
−

G(x)(u)
with respect to u, we have d −G(x)(y)=1 with y=(x−g0)/pC(x−g0). This
completes the proof. L

Corollary 3.5. Let C be locally uniformly convex and G nonempty
closed subset of X. Then for every x ¥X0G there exists a point y ¥ “C such
that d −G(x)(y)=1 if and only if G is an approximatively compact Chebyshev
subset of X.

Proof. This result follows from Corollary 3.2 and Theorem 3.4. L

Theorem 3.5. Let G be a nonempty closed subset of X. If X is reflexive
and C is both strictly convex and Kadec, then the set

D={x ¥X0G; ,y ¥ “C with d −G(x)(y)=1}

is residual in X0G.

Proof. Let X0(G) be the set of all points x ¥X0G such that the problem
minC(x, G) is well posed, by which we mean that G is approximatively
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compact for x and PG(x) is a singleton. Thus, for each point x ¥X0(G),
there exists y ¥ “C such that d −G(x)(y)=1 from Theorem 3.4. This implies
that X0(G) …D. From Theorem 3.3 in [12], X0(G) is residual in X0G, so
is D. L

Remark 3.3. In the case when p( · )=|| · ||, Fitzpatrick [9] put forward
the following open problem: If G is a closed subset of reflexive Banach
space X, is the set D residual in X0G? Clearly, Theorem 3.5 gives an
affirmative answer to the problem under the assumption that C is both
strictly convex and Kadec. We do not know whether Theorem 3.5 remains
true without this assumption.
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